Лекция 1
Чтобы начать глубокое обучение, нам нужно развить несколько базовых навыков. Все машинное обучение связано с извлечением информации из данных. Итак, мы начнем с изучения практических навыков хранения, обработки и предварительной обработки данных.
Более того, машинное обучение обычно требует работы с большими наборами данных, которые мы можем рассматривать как таблицы, где строки соответствуют примерам, а столбцы соответствуют атрибутам.
Линейная алгебра дает нам мощный набор методов работы с табличными данными. Мы не будем углубляться в «сорняки», а сосредоточимся на основных матричных операциях и их реализации.
Кроме того, глубокое обучение – это оптимизация. У нас есть модель с некоторыми параметрами, и мы хотим найти те, которые лучше всего соответствуют нашим данным. Определение способа перемещения каждого параметра на каждом шаге алгоритма требует небольшого вычисления, которое будет кратко представлено. К счастью, пакет autograd автоматически вычисляет дифференциацию для нас, и мы рассмотрим это позже.
Затем машинное обучение занимается прогнозированием: каково вероятное значение какого-либо неизвестного атрибута с учетом наблюдаемой нами информации? Чтобы строго рассуждать в условиях неопределенности, нам потребуется использовать язык вероятностей.
В конце концов, официальная документация предоставляет множество описаний и примеров, выходящих за рамки этой книги. В заключение главы мы покажем вам, как искать необходимую информацию в документации.
В этой книге математическое содержание сведено к минимуму, необходимому для правильного понимания глубокого обучения. Однако это не означает, что эта книга не содержит математики. Таким образом, эта глава представляет собой быстрое введение в основную и часто используемую математику, чтобы позволить любому понять, по крайней мере, большую часть математического содержания книги. Если вы хотите понять все математическое содержание, дальнейшего просмотра онлайн-приложения по математике будет достаточно.

1.1 Манипулирование данными
Чтобы что-то сделать, нам нужен способ хранения данных и управления ими. Как правило, с данными нам нужно сделать две важные вещи: 
(i) получить их; и 
(ii) обработать их, когда они будут внутри компьютера. 
Нет смысла получать данные без какого-либо способа их хранения, поэтому давайте сначала испачкаем руки, поиграв с синтетическими данными. Для начала введем n-мерный массив, который также называется тензором.
Если вы работали с NumPy, наиболее широко используемым пакетом для научных вычислений на Python, то этот раздел вам будет знаком. Независимо от того, какой фреймворк вы используете, его тензорный класс (ndarray в MXNet, Tensor как в PyTorch, так и в TensorFlow) похож на ndarray NumPy с несколькими потрясающими функциями. Во-первых, GPU хорошо поддерживается для ускорения вычислений, тогда как NumPy поддерживает только вычисления CPU. Во-вторых, тензорный класс поддерживает автоматическое дифференцирование.
Эти свойства делают тензорный класс подходящим для глубокого обучения. На протяжении всей книги, когда мы говорим тензоры, мы имеем в виду экземпляры класса тензоров, если не указано иное.

1.1.1 Начало работы
В этом разделе мы стремимся подготовить вас к работе, снабдив вас основными инструментами математики и численных вычислений, которые вы будете использовать в процессе изучения материала лекций. Не беспокойтесь, если вам сложно понять некоторые математические концепции или библиотечные функции. В следующих разделах мы вернемся к этому материалу в контексте практических примеров, и он прояснится. С другой стороны, если у вас уже есть некоторый опыт и вы хотите углубиться в математическое содержание, просто пропустите этот раздел.
Для начала импортируем модули np (numpy) и npx (numpy_extension) из MXNet. Здесь модуль np включает функции, поддерживаемые NumPy, а модуль npx содержит набор расширений, разработанных для расширения возможностей глубокого обучения в среде, подобной NumPy. При использовании тензоров мы почти всегда вызываем функцию set_np: это для совместимости обработки тензора другими компонентами MXNet.
from mxnet import np, npx
npx.set_np()

Тензор представляет собой (возможно, многомерный) массив числовых значений. С одной осью тензор соответствует (в математике) вектору. С двумя осями тензор соответствует матрице. Тензоры с более чем двумя осями не имеют специальных математических имен.
Для начала мы можем использовать arange для создания вектора-строки x, содержащего первые 12 целых чисел, начинающихся с 0, хотя по умолчанию они создаются как числа с плавающей запятой. Каждое из значений тензора называется элементом тензора. Например, в тензоре x 12 элементов. Если не указано иное, новый тензор будет сохранен в основной памяти и предназначен для вычислений на базе ЦП.
x = np.arange(12)
x
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.])

Мы можем получить доступ к форме тензора (длине по каждой оси), проверив его свойство формы.
x.shape (12,)
Если мы просто хотим узнать общее количество элементов в тензоре, то есть произведение всех элементов формы, мы можем проверить его размер. Поскольку здесь мы имеем дело с вектором, отдельный элемент его формы идентичен его размеру.
x.size
Чтобы изменить форму тензора, не изменяя ни количество элементов, ни их значения, мы можем вызвать функцию изменения формы. Например, мы можем преобразовать наш тензор x из вектора-строки с формой (12,) в матрицу с формой (3, 4). Этот новый тензор содержит точно такие же значения, но рассматривает их как матрицу, организованную как 3 строки и 4 столбца. Повторюсь, хотя форма изменилась, элементы остались прежними. Обратите внимание, что размер не изменяется при изменении формы.
X = x.reshape(3, 4)
X
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]])

Изменять форму путем указания каждого размера вручную не нужно. Если наша целевая форма представляет собой матрицу с формой (высотой, шириной), то после того, как мы знаем ширину, высота задается неявно. Почему мы должны сами проводить деление? В приведенном выше примере, чтобы получить матрицу с 3 строками, мы указали, что она должна иметь 3 строки и 4 столбца. К счастью, тензоры могут автоматически определять одно измерение с учетом остальных. Мы вызываем эту возможность, помещая -1 для измерения, которое мы хотим, чтобы тензоры автоматически определяли. В нашем случае вместо вызова x.reshape (3, 4) мы могли бы эквивалентно вызвать x.reshape (-1, 4) или x.reshape (3, -1).
Как правило, мы хотим, чтобы наши матрицы инициализировались нулями, единицами, некоторыми другими константами или числами, случайным образом выбираемыми из определенного распределения. Мы можем создать тензор, представляющий тензор со всеми элементами, установленными на 0, и формой (2, 3, 4) следующим образом:
np.zeros ((2, 3, 4))
array ([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])

Точно так же мы можем создать тензоры с каждым элементом, установленным в 1, следующим образом:
np.ones ((2, 3, 4))
array ([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]])

Часто мы хотим случайным образом выбрать значения для каждого элемента тензора из некоторого распределения вероятностей. Например, когда мы создаем массивы для использования в качестве параметров в нейронной сети, мы обычно инициализируем их значения случайным образом. Следующий фрагмент кода создает тензор с формой (3, 4). Каждый из его элементов случайным образом выбирается из стандартного гауссовского (нормального) распределения со средним значением 0 и стандартным отклонением 1.
np.random.normal (0, 1, size = (3, 4))
array ([[2.2122064, 1.1630787, 0.7740038, 0.4838046],
[1.0434405, 0.29956347, 1.1839255, 0.15302546],
[1.8917114, -1.1688148, -1.2347414, 1.5580711]])

Мы также можем указать точные значения для каждого элемента в желаемом тензоре, предоставив список Python (или список списков), содержащий числовые значения. Здесь самый внешний список соответствует оси
0, а внутренний список - к оси 1.
np.array ([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
array ([[2., 1., 4., 3.],
[1., 2., 3., 4.],
[4., 3., 2., 1.]])

1.1.2 Операции
Эта книга не о программной инженерии. Наши интересы не ограничиваются простым чтением и записью данных из / в массивы. Мы хотим выполнять математические операции с этими массивами. Некоторые из самых простых и полезных операций - это поэлементные операции. Они применяют стандартную скалярную операцию к каждому элементу массива. Для функций, которые принимают два массива в качестве входных данных, поэлементные операции применяют некоторый стандартный бинарный оператор к каждой паре соответствующих элементов из двух массивов. Мы можем создать поэлементную функцию из любой функции, которая отображает скаляр в скаляр.
В математической записи мы бы обозначили такой унарный скалярный оператор (принимающий один вход) сигнатурой f: R → R. Это просто означает, что функция отображает любое действительное число (R) на другое. Точно так же мы обозначаем бинарный скалярный оператор (принимающий два реальных входа и дающий один выход) сигнатурой f: R, R → R. Для любых двух векторов u и v одинаковой формы и бинарного оператора f мы можем создадим вектор c = F (u, v), задав ci ← f (ui, vi) для всех i, где ci, ui и vi - i-е элементы векторов c, u и v. вектор со значениями F: Rd, Rd → Rd, подняв скалярную функцию до поэлементной векторной операции.
Общие стандартные арифметические операторы (+, -, *, / и **) были подняты до поэлементных операций для любых тензоров одинаковой формы произвольной формы. Мы можем вызывать поэлементные операции над любыми двумя тензорами одинаковой формы. В следующем примере мы используем запятые для формулировки кортежа из 5 элементов, где каждый элемент является результатом поэлементной операции.
x = np.array ([1, 2, 4, 8])
y = np.array ([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y # Оператор ** - возведение в степень
(array ([3., 4., 6., 10.]),
array ([- 1., 0., 2., 6.]),
array ([2., 4., 8., 16.]),
array ([0.5, 1., 2., 4.]),
array ([1., 4., 16., 64.]))

Поэлементно можно применять гораздо больше операций, включая унарные операторы, такие как возведение в степень.
np.exp (х)
array ([2.7182817e + 00, 7.3890562e + 00, 5.4598148e + 01, 2.9809580e + 03])

В дополнение к поэлементным вычислениям мы также можем выполнять операции линейной алгебры, включая векторные скалярные произведения и умножение матриц. Мы объясним ключевые моменты линейной алгебры (без предполагаемых предварительных знаний) в разделе 2.3.
Мы также можем объединить несколько тензоров вместе, складывая их последовательно, чтобы сформировать больший тензор. Нам просто нужно предоставить список тензоров и сообщить системе, по какой оси объединять.
В приведенном ниже примере показано, что происходит, когда мы объединяем две матрицы по строкам (ось 0, первый элемент фигуры) и столбцам (ось 1, второй элемент фигуры). Мы можем видеть, что длина оси-0 первого выходного тензора (6) является суммой двух длин входных тензоров по оси-0 (3+ 3); в то время как длина оси-1 второго выходного тензора (8) является суммой двух длин входных тензоров по оси-1 (4 + 4).
X = np.arange (12) .reshape (3, 4)
Y = np.array ([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
np.concatenate ([X, Y], axis = 0), np.concatenate ([X, Y], axis = 1)
(array ([[0., 1., 2., 3.],
[4., 5., 6., 7.],
[8., 9., 10., 11.],
[2., 1., 4., 3.],
[1., 2., 3., 4.],
[4., 3., 2., 1.]]),
array ([[0., 1., 2., 3., 2., 1., 4., 3.],
[4., 5., 6., 7., 1., 2., 3., 4.],
[8., 9., 10., 11., 4., 3., 2., 1.]]))

Иногда мы хотим построить двоичный тензор с помощью логических операторов. Возьмем для примера X == Y.
Для каждой позиции, если X и Y равны в этой позиции, соответствующая запись в новом тензоре принимает значение 1, что означает, что логический оператор X == Y истинен в этой позиции; в противном случае эта позиция занимает 0. 
X == Y
array([[False, True, False, True],
[False, False, False, False],
[False, False, False, False]])

Суммирование всех элементов тензора дает тензор только с одним элементом.
X.sum()
array(66.)

1.1.3 Механизм трансляции
В приведенном выше разделе мы увидели, как выполнять поэлементные операции с двумя тензорами одинаковой формы. При определенных условиях, даже если формы различаются, мы все равно можем выполнять поэлементные операции, вызывая механизм широковещания. Этот механизм работает следующим образом:
Во-первых, расширьте один или оба массива, соответствующим образом скопировав элементы, чтобы после этого преобразования два тензора имели одинаковую форму. Во-вторых, выполните поэлементные операции с полученными массивами.
В большинстве случаев мы транслируем по оси, где изначально массив имеет длину только 1, как в следующем примере:
a = np.arange(3).reshape(3, 1)
b = np.arange(2).reshape(1, 2)
a, b
(array([[0.],
[1.],
[2.]]),
array([[0., 1.]]))

Поскольку a и b представляют собой матрицы 3 × 1 и 1 × 2 соответственно, их формы не совпадают, если мы хотим, чтобы добавить их. Мы транслируем элементы обеих матриц в большую матрицу 3 × 2 следующим образом: для матрицы a она копирует столбцы, а для матрицы b реплицирует строки перед тем, как складывать обе поэлементно.
a + b
array([[0., 1.],
[1., 2.],
[2., 3.]])

1.1.4 Индексирование и нарезка
Как и в любом другом массиве Python, к элементам в тензоре можно обращаться по индексу. Как и в любом массиве Python, первый элемент имеет индекс 0, а диапазоны указаны для включения первого, но перед последним элементом. Как и в стандартных списках Python, мы можем получить доступ к элементам в соответствии с их относительным положением до конца списка, используя отрицательные индексы.
Таким образом, [-1] выбирает последний элемент, а [1: 3] выбирает второй и третий элементы следующим образом:
X[-1], X[1:3]
(array([ 8., 9., 10., 11.]),
array([[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]]))

Помимо чтения, мы также можем записывать элементы матрицы, задавая индексы.
X[1, 2] = 9
X
array([[ 0., 1., 2., 3.],
[ 4., 5., 9., 7.],
[ 8., 9., 10., 11.]])

Если мы хотим присвоить нескольким элементам одно и то же значение, мы просто индексируем их все, а затем присваиваем им значение. Например, [0: 2,:] обращается к первой и второй строкам, где : берет все элементы вдоль оси 1 (столбец). Хотя мы обсуждали индексацию для матриц, очевидно, что это также работает для векторов и для тензоров более чем двух измерений.
X[0:2, :] = 12
X
array([[12., 12., 12., 12.],
[12., 12., 12., 12.],
[ 8., 9., 10., 11.]])



1.1.5 Сохранение памяти
Выполняемые операции могут привести к выделению новой памяти для результатов хоста. Например, если мы напишем Y = X + Y, мы разыменуем тензор, на который Y указывал, и вместо этого укажем Y на вновь выделенную память. В следующем примере мы демонстрируем это с помощью функции Python id (), которая дает нам точный адрес указанного объекта в памяти. После выполнения Y = Y + X мы обнаружим, что id (Y) указывает на другое место. Это потому, что Python сначала оценивает Y + X, выделяя новую память для результата, а затем заставляет Y указывать на это новое место в памяти.
before = id(Y)
Y = Y + X
id(Y) == before
False

Это может быть нежелательно по двум причинам. Во-первых, мы не хотим все время без надобности тратить время на выделение памяти. В машинном обучении мы можем иметь сотни мегабайт параметров и обновлять их все несколько раз в секунду. Обычно мы хотим выполнять эти обновления на месте. Во-вторых, мы можем указать на одни и те же параметры из нескольких переменных.
Если мы не обновим данные на месте, другие ссылки все равно будут указывать на старую ячейку памяти, что позволяет частям нашего кода непреднамеренно ссылаться на устаревшие параметры.
К счастью, выполнять операции на месте просто. Мы можем присвоить результат операции ранее выделенному массиву с помощью нотации среза, например, Y [:] = <выражение>. Чтобы проиллюстрировать эту концепцию, мы сначала создаем новую матрицу Z той же формы, что и другой Y, используя zeros_like для выделения блока из 0 записей.
Z = np.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))
id(Z): 139872793032656
id(Z): 139872793032656

Если значение X не используется повторно в последующих вычислениях, мы также можем использовать X [:] = X + Y или X + = Y, чтобы уменьшить накладные расходы памяти при выполнении операции.
before = id(X)
X += Y
id(X) == before
True

1.1.6 Преобразование в другие объекты Python
Преобразование в тензор NumPy или наоборот очень просто. Преобразованный результат не разделяет память.
Это незначительное неудобство на самом деле очень важно: когда вы выполняете операции на ЦП или на графических процессорах, вы не хотите останавливать вычисления, ожидая увидеть, может ли пакет Python NumPy делать что-то еще с тем же фрагментом памяти.
A = X.asnumpy()
B = np.array(A)
type(A), type(B)
(numpy.ndarray, mxnet.numpy.ndarray)

Чтобы преобразовать тензор размера 1 в скаляр Python, мы можем вызвать функцию элемента или встроенные функции Python.
a = np.array([3.5])
a, a.item(), float(a), int(a)
(array([3.5]), 3.5, 3.5, 3)

Резюме
· Основным интерфейсом для хранения и обработки данных для глубокого обучения является тензор (многомерный массив). Он предоставляет множество функций, включая базовые математические операции, широковещательную рассылку, индексирование, нарезку, экономию памяти и преобразование в другие объекты Python.
Упражнения
1. Запустите код из этого раздела. Измените условный оператор X == Y в этом разделе на X <Y или X> Y, а затем посмотрите, какой тензор вы можете получить.
2. Замените два тензора, которые оперируют элементом в механизме вещания, другими формами, например, трехмерными тензорами. Результат такой же, как ожидалось?

Обсуждение (см. в https://discuss.d2l.ai/t/26)
1.2 Предварительная обработка данных
До сих пор мы ввели множество методов манипулирования данными, которые уже хранятся в тензорах. Чтобы применить глубокое обучение к решению реальных проблем, мы часто начинаем с предварительной обработки необработанных данных, а не хорошо подготовленных данных в тензорном формате. Среди популярных инструментов анализа данных в Python обычно используется пакет pandas. Как и многие другие пакеты расширений в обширной экосистеме Python, pandas могут работать вместе с тензорами. Итак, мы кратко пройдемся по этапам предварительной обработки необработанных данных с помощью pandas и их преобразования в тензорный формат. Мы рассмотрим больше методов предварительной обработки данных в следующих главах.
1.2.1 Чтение набора данных
В качестве примера мы начинаем с создания искусственного набора данных, который хранится в файле csv (значения, разделенные запятыми) ../data/house_tiny.csv. Данные, хранящиеся в других форматах, могут обрабатываться аналогичным образом. Следующая функция mkdir_if_not_exist гарантирует, что каталог ../data существует. Обратите внимание, что комментарий # @ save - это специальная метка, в которой следующие функция, класс или операторы сохраняются в пакете d2l, поэтому позже они могут быть напрямую вызваны (например, d2l.mkdir_if_not_exist(path)) без переопределения.
import os
def mkdir_if_not_exist(path): #@save
"""Make a directory if it does not exist."""
if not isinstance(path, str):
path = os.path.join(*path)
if not os.path.exists(path):
os.makedirs(path)

Ниже мы записываем набор данных строка за строкой в ​​файл csv.
data_file = '../data/house_tiny.csv'
mkdir_if_not_exist ( '../ данные')
с open (data_file, 'w') как f:
f.write ('NumRooms, Alley, Price \ n') # Имена столбцов
f.write ('NA, Pave, 127500 \ n') # Каждая строка представляет точку данных
f.write ( '2, Н. А., 106000 \ n ')
f.write ( '4, Н.А., 178100 \ n ')
f.write ( 'NA, NA, 140000 \ n ')

Чтобы загрузить необработанный набор данных из созданного файла csv, мы импортируем пакет pandas и вызываем функцию read_csv. Этот набор данных состоит из четырех строк и трех столбцов, каждая из которых описывает количество комнат («NumRooms»), тип переулка («Аллея») и цену («Цена») дома.
# Если pandas не установлен, просто раскомментируйте следующую строку:
#! pip install pandas
импортировать панд как pd
data = pd.read_csv (файл_данных)
печать (данные)
NumRooms Alley Цена
0 NaN Pave 127500
1 2.0 NaN 106000
2 4.0 NaN 178100
3 NaN NaN 140000

1.2.2 Обработка отсутствующих данных
Обратите внимание, что в записях «NaN» отсутствуют значения. Типичные методы обработки недостающих данных включают в себя вменение и удаление, где вменение заменяет отсутствующие значения на подставленные, а при удалении пропущенные значения игнорируются. Здесь мы рассмотрим вменение.
Посредством индексации на основе целочисленного местоположения (iloc) мы разделяем данные на входные и выходные данные, где первый занимает первые два столбца, а второй сохраняет только последний столбец. Для числовых значений во входных данных, которые отсутствуют, мы заменяем записи «NaN» на среднее значение того же столбца.
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
print(inputs)
NumRooms Alley
0 3.0 Pave
1 2.0 NaN
2 4.0 NaN
3 3.0 NaN

Для категориальных или дискретных значений во входных данных мы рассматриваем «NaN» как категорию. Поскольку столбец «Аллея» принимает только два типа категориальных значений «Pave» и «NaN», pandas может автоматически преобразовать этот столбец в два столбца «Alley_Pave» и «Alley_nan». Строка с типом переулка «Pave» установит значения «Alley_Pave» и «Alley_nan» равными 1 и 0. Строка с отсутствующим типом переулка установит свои значения на 0 и 1.
inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
NumRooms Alley_Pave Alley_nan
0 3.0 1 0
1 2.0 0 1
2 4.0 0 1
3 3.0 0 1

1.2.3 Преобразование в тензорный формат
Теперь, когда все записи на входах и выходах числовые, их можно преобразовать в тензорный формат. Как только данные находятся в этом формате, ими можно далее манипулировать с помощью тензорных функций, которые мы представили в разделе 2.1. из mxnet import np
X, y = np.array(inputs.values), np.array(outputs.values)
X, y
(array([[3., 1., 0.],
[2., 0., 1.],
[4., 0., 1.],
[3., 0., 1.]], dtype=float64),
array([127500, 106000, 178100, 140000], dtype=int64))

Резюме
· Как и многие другие пакеты расширений в обширной экосистеме Python, pandas могут работать вместе с тензорами.
· Вменение и удаление могут использоваться для обработки недостающих данных.
Упражнения
Создайте необработанный набор данных с большим количеством строк и столбцов.
1. Удалите столбец с наибольшим количеством пропущенных значений.
2. Преобразуйте предварительно обработанный набор данных в тензорный формат.
Обсуждение (см. в https://discuss.d2l.ai/t/28)
1.3 Линейная алгебра
Теперь, когда вы можете хранить данные и манипулировать ими, давайте кратко рассмотрим подмножество базовой линейной алгебры, которое вам понадобится для понимания и реализации большинства моделей, описанных в этой книге. Ниже мы представляем основные математические объекты, арифметику и операции в линейной алгебре, выражая каждый из них через математическую нотацию и соответствующую реализацию в коде.
1.3.1 Скаляры
Если вы никогда не изучали линейную алгебру или машинное обучение, то ваш прошлый опыт математики, вероятно, заключался в том, чтобы думать над одним числом за раз. И, если вы когда-либо балансировали в чековой книжке или даже платили за ужин в ресторане, то вы уже знаете, как делать базовые вещи, такие как сложение и умножение пар чисел. Например, температура в Пало-Альто составляет 52 градуса по Фаренгейту. Формально мы называем значения, состоящие из одной числовой величины, скалярами. Если вы хотите преобразовать это значение в градусы Цельсия (более разумная шкала температур в метрической системе), вы должны вычислить выражение c = 5/9 (f - 32), установив f равным 52. В этом уравнении каждый из членов - 5, 9 , 32 - скалярные значения. Заполнители c и f называются переменными и представляют неизвестные скалярные значения.
В этой курсе мы используем математические обозначения, в которых скалярные переменные обозначаются обычными буквами в нижнем регистре (например, x, y и z). Мы обозначаем пространство всех (непрерывных) вещественнозначных скаляров через R. Для удобства мы будем стремиться к строгим определениям того, что именно представляет собой пространство, но пока просто помните, что выражение x ∈ R - это формальный способ сказать, что x - скаляр с действительными значениями.
Символ ∈ можно произносить как «в» и просто означает принадлежность к множеству. Аналогично, мы могли бы написать x, y ∈ {0, 1}, чтобы указать, что x и y - числа, значение которых может быть только 0 или 1.
Скаляр представлен тензором с одним элементом. В следующем фрагменте мы создаем экземпляры двух скаляров и выполняем с ними некоторые знакомые арифметические операции, а именно сложение, умножение, деление и возведение в степень из mxnet импортировать np, npx
npx.set_np()
x = np.array(3.0)
y = np.array(2.0)
x + y, x * y, x / y, x ** y
(array(5.), array(6.), array(1.5), array(9.))

1.3.2 Векторы
Вы можете рассматривать вектор как просто список скалярных значений. Мы называем эти значения элементами (элементами или компонентами) вектора. Когда наши векторы представляют собой примеры из нашего набора данных, их значения имеют какое-то реальное значение. Например, если мы обучаем модель прогнозированию риска невозврата кредита, мы могли бы связать каждого заявителя с вектором, компоненты которого соответствуют их доходу, стажу работы, количеству предыдущих дефолтов и другим факторам. Если бы мы изучали риск сердечных приступов, с которыми потенциально могут столкнуться пациенты больниц, мы могли бы представить каждого пациента вектором, компоненты которого отражают их последние жизненно важные показатели, уровень холестерина, количество минут упражнений в день и т. д. В математической записи мы обычно будем обозначать векторы как полужирные буквы в нижнем регистре (например, x, y и z).
Мы работаем с векторами через одномерные тензоры. Как правило, тензоры могут иметь произвольную длину в зависимости от ограничений памяти вашей машины.
x = np.arange(4)
x
array([0., 1., 2., 3.])

Мы можем ссылаться на любой элемент вектора с помощью нижнего индекса. Например, мы можем обратиться к i-му элементу x как xi. Обратите внимание, что элемент xi является скаляром, поэтому мы не выделяем шрифт жирным шрифтом при обращении к нему. В обширной литературе векторы-столбцы рассматриваются как ориентация векторов по умолчанию, как и в этом курсе. В математике вектор x можно записать как
х = (х1, х2, …., xn)Т,                                                      (2.3.1)
где x1,. , , , xn - элементы вектора. В коде мы получаем доступ к любому элементу путем индексации в тензоре.
х [3]
array (3).

Длина, размерность и форма
Вернемся к некоторым концепциям из раздела 2.1. Вектор - это просто массив чисел. И как каждый массив имеет длину, так и каждый вектор. В математических обозначениях, если мы хотим сказать, что вектор x состоит из n действительных скаляров, мы можем выразить это как x ∈ Rn. Длину вектора обычно называют размерностью вектора.
Как и в случае с обычным массивом Python, мы можем получить доступ к длине тензора, вызвав встроенную в Python функцию len ().
len (х)
4

Когда тензор представляет вектор (ровно с одной осью), мы также можем получить доступ к его длине через атрибут .shape. Фигура - это кортеж, в котором указана длина (размерность) по каждой оси тензора. Для тензоров только с одной осью фигура имеет только один элемент.
x.shape                                                  
(4,)

Обратите внимание, что слово «измерение» имеет тенденцию быть перегруженным в этих контекстах, и это сбивает людей с толку. Чтобы уточнить, мы используем размерность вектора или оси для обозначения его длины, т. е. количество элементов вектора или оси. Однако мы используем размерность тензора для обозначения количества осей, которые имеет тензор. В этом смысле размерность некоторой оси тензора будет длиной этой оси.
1.3.3 Матрицы
Так же, как векторы обобщают скаляры от нулевого до первого порядка, матрицы обобщают векторы от первого до второго. Матрицы, которые мы обычно будем обозначать жирным шрифтом, заглавными буквами (например, X, Y и Z), представлены в коде как тензоры с двумя осями.
В математических обозначениях мы используем A ∈ Rm × n, чтобы выразить, что матрица A состоит из m строк и n столбцов действительных скаляров. Визуально любую матрицу A ∈ Rm × n можно проиллюстрировать в виде таблицы, где каждый элемент aij принадлежит i-й строке и j-му столбцу:
A = {aij},                                                                         (2.3.2)
Для любого A ∈ Rm × n форма A равна (m, n) или m × n. В частности, когда матрица имеет одинаковое количество строк и столбцов, ее форма становится квадратом; таким образом, она называется квадратной матрицей.
Мы можем создать матрицу размером m × n, указав фигуру с двумя компонентами m и n при вызове любой из наших любимых функций для создания экземпляра тензора.
A = np.arange(20).reshape(5, 4)
A
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]])

Мы можем получить доступ к скалярному элементу aij матрицы A в :eqref: eq_matrix_def, указав индексы для строки (i) и столбца (j), например [A]ij. Когда скалярные элементы матрицы A, такие как in :eqref :eq_matrix_def, не указаны, мы можем просто использовать строчную букву матрицы A с индексом aij для ссылки на [A]ij. Для простоты обозначений запятые вставляются для разделения индексов только при необходимости, например, a2,3j и [A]2i − 1,3.
Иногда мы хотим перевернуть оси. Когда мы обмениваемся строками и столбцами матрицы, результат называется транспонированием матрицы. Формально мы обозначаем транспонированную матрицу Aʼs через A⊤, и если B = A⊤,
тогда bij = aji для любых i и j. Таким образом, транспонирование A в :eqref :eq_matrix_def представляет собой матрицу размера n × m:
A = {aji}                                                                  (2.3.3)
Теперь мы получаем доступ к транспонированной матрице в коде.
A.T
array([[ 0., 4., 8., 12., 16.],
[ 1., 5., 9., 13., 17.],
[ 2., 6., 10., 14., 18.],
[ 3., 7., 11., 15., 19.]])

Как особый тип квадратной матрицы, симметричная матрица A равна своему транспонированию: A = A⊤. Здесь мы определяем симметричную матрицу B.
B = np.array([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B
array([[1., 2., 3.],
[2., 0., 4.],
[3., 4., 5.]])

Теперь сравним B с его транспонированием.
B == B.T
array([[ True, True, True],
[ True, True, True],
[ True, True, True]])

Матрицы - это полезные структуры данных: они позволяют нам систематизировать данные с различными модальностями вариации. Например, строки в нашей матрице могут соответствовать разным домам (точкам данных), а столбцы могут соответствовать разным атрибутам. Это должно показаться знакомым, если вы когда-либо использовали программное обеспечение для работы с электронными таблицами или читали Раздел 2.2. Таким образом, хотя ориентация по умолчанию для одного вектора является вектором-столбцом, в матрице, которая представляет собой табличный набор данных, более традиционно рассматривать каждую точку данных как вектор-строку в матрице. И, как мы увидим в следующих лекциях, это соглашение позволит использовать общие методы глубокого обучения. Например, вдоль внешней оси тензора мы можем получить доступ или перечислить минипакеты точек данных или просто точки данных, если минипакет не существует.
1.3.4 Тензоры
Так же, как векторы обобщают скаляры, а матрицы обобщают векторы, мы можем создавать структуры данных с еще большим количеством осей. Тензоры («тензоры» в этом подразделе относятся к алгебраическим объектам) дают нам общий способ описания n-мерных массивов с произвольным числом осей. Векторы, например, являются тензорами первого порядка, а матрицы - тензорами второго порядка. Тензоры обозначаются заглавными буквами специального начертания шрифта (например, X, Y и Z), а их механизм индексации (например, xijk и [X]1,2i − 1,3) аналогичен механизму индексации матриц.
Тензоры станут более важными, когда мы начнем работать с изображениями, которые поступают в виде трехмерных массивов с 3 осями, соответствующими высоте, ширине и оси канала для наложения цветовых каналов (красный, зеленый и синий). На данный момент мы пропустим тензоры более высокого порядка и сосредоточимся на основах.
X = np.arange(24).reshape(2, 3, 4)
X
array([[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]],
[[12., 13., 14., 15.],
[16., 17., 18., 19.],
[20., 21., 22., 23.]]])

1.3.5 Основные свойства тензорной арифметики
Скаляры, векторы, матрицы и тензоры («тензоры» в этом подразделе относятся к алгебраическим объектам) произвольного числа осей обладают некоторыми хорошими свойствами, которые часто могут оказаться полезными. Например, вы могли заметить из определения поэлементной операции, что любая поэлементная унарная операция не изменяет форму своего операнда. Точно так же для любых двух тензоров одинаковой формы результатом любой двоичной поэлементной операции будет тензор той же формы.
Например, добавление двух матриц одинаковой формы выполняет поэлементное сложение этих двух матриц.
A = np.arange(20).reshape(5, 4)
B = A.copy() # Assign a copy of `A` to `B` by allocating new memory
A, A + B
(array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]]),
array([[ 0., 2., 4., 6.],
[ 8., 10., 12., 14.],
[16., 18., 20., 22.],
[24., 26., 28., 30.],
[32., 34., 36., 38.]]))

В частности, поэлементное умножение двух матриц называется их произведением Адамара (математическая запись ⊙). Рассмотрим матрицу B ∈ Rm × n, элемент строки i и столбца j которой равен bij. Произведение Адамара матриц A (определенных в :eqref :eq_matrix_def) и B
A ⊙ B = {aijbij}                                                            (2.3.4)
A * B
array([[ 0., 1., 4., 9.],
[ 16., 25., 36., 49.],
[ 64., 81., 100., 121.],
[144., 169., 196., 225.],
[256., 289., 324., 361.]])

Умножение или добавление тензора на скаляр также не изменяет форму тензора, где каждый элемент тензора операнда будет добавлен или умножен на скаляр.
a = 2
X = np.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape
(array([[[ 2., 3., 4., 5.],
[ 6., 7., 8., 9.],
[10., 11., 12., 13.]],
[[14., 15., 16., 17.],
[18., 19., 20., 21.],
[22., 23., 24., 25.]]]),
(2, 3, 4))

1.3.6 Редукция
Одна полезная операция, которую мы можем выполнить с произвольными тензорами, - это вычислить сумму их элементов. В математических обозначениях суммы выражаются с помощью символа. Чтобы выразить сумму элементов вектора x длины d, мы пишем ∑di = 1xi. В коде мы можем просто вызвать функцию для вычисления суммы.
x = np.arange(4)
x, x.sum()
(array([0., 1., 2., 3.]), array(6.))

Мы можем выражать суммы по элементам тензоров произвольной формы. Например, сумма элементов матрицы A размером m × n может быть записана как ∑mi = 1Еnj = 1aij.
A.shape, A.sum ()
((5, 4), array (190.))

По умолчанию вызов функции вычисления суммы уменьшает тензор по всем его осям до скаляра. Мы также можем указать оси, по которым тензор уменьшается путем суммирования. В качестве примера возьмем матрицы. Чтобы уменьшить размер строки (ось 0) путем суммирования элементов всех строк, мы указываем axis = 0 при вызове функции. Поскольку входная матрица уменьшается вдоль оси 0 для генерации выходного вектора, размер оси 0 входа теряется в выходной форме.
A_sum_axis0 = A.sum (ось = 0)
A_sum_axis0, A_sum_axis0.shape
(array([40., 45., 50., 55.]), (4,))
Указание оси = 1 уменьшит размер столбца (ось 1) путем суммирования элементов всех столбцов. Таким образом, размер оси 1 входа теряется в выходной форме.
A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape
(array([ 6., 22., 38., 54., 70.]), (5,))

Уменьшение матрицы по строкам и столбцам посредством суммирования эквивалентно суммированию всех элементов матрицы.
A.sum(axis=[0, 1]) # Same as `A.sum()`
array(190.)

Связанная величина - это среднее значение, которое также называется средним. Мы вычисляем среднее значение, разделив сумму на общее количество элементов. В коде мы могли просто вызвать функцию для вычисления среднего значения тензоров произвольной формы.
A.mean (), A.sum () / A.size
(массив (9,5), массив (9,5))

Точно так же функция вычисления среднего может также уменьшать тензор вдоль указанных осей.
A.mean(axis=0), A.sum(axis=0) / A.shape[0]
(array([ 8., 9., 10., 11.]), array([ 8., 9., 10., 11.]))

Сумма без уменьшения
Однако иногда может быть полезно оставить количество осей неизменным при вызове функции для вычисления суммы или среднего.
sum_A = A.sum (ось = 1, keepdims = True)
sum_A
array ([[6.],
[22],
[38],
[54],
[70.]])

Например, поскольку sum_A по-прежнему сохраняет свои две оси после суммирования каждой строки, мы можем разделить A на sum_A с широковещательной передачей.
A / sum_A
array ([[0., 0,16666667, 0,33333334, 0,5],
[0,18181819, 0,22727273, 0,27272728, 0,3181818],
[0,21052632, 0,23684211, 0,2631579, 0,28947368],
[0,22222222, 0,24074075, 0,25925925, 0,2777778],
[0,22857143, 0,24285714, 0,25714287, 0,27142859]])

Если мы хотим вычислить совокупную сумму элементов A вдоль некоторой оси, скажем, axis = 0 (строка за строкой), мы можем вызвать функцию cumsum. Эта функция не уменьшает входной тензор по любой оси.
A.cumsum(axis=0)
array([[ 0., 1., 2., 3.],
[ 4., 6., 8., 10.],
[12., 15., 18., 21.],
[24., 28., 32., 36.],
[40., 45., 50., 55.]])

1.3.7 Точечные продукты
До сих пор мы выполняли только поэлементные операции, суммирования и усреднения. И если бы это все, что мы могли сделать, линейная алгебра, вероятно, не заслуживала бы отдельного раздела. Однако один из самых фундаментальных операций - это скалярное произведение. Для двух векторов x, y ∈ Rd их скалярное произведение x⊤y (или ⟨X, y⟩) является суммой произведений элементов в одной позиции: x⊤y = ∑di = 1xiyi.
y = np.ones(4)
x, y, np.dot(x, y)
(array([0., 1., 2., 3.]), array([1., 1., 1., 1.]), array(6.))

Обратите внимание, что мы можем выразить скалярное произведение двух векторов эквивалентно, выполняя поэлементное умножение, а затем сумму:
np.sum(x * y)
array(6.)
Точечные продукты полезны в широком диапазоне контекстов. Например, для некоторого набора значений, обозначенного вектором x ∈ Rd, и набора весов, обозначенного w ∈ Rd, взвешенная сумма значений в x в соответствии с весами w может быть выражена как скалярное произведение x⊤w. Когда веса неотрицательны и в сумме равны единице (т.е. (∑di = 1wi = 1)), точечное произведение выражает средневзвешенное значение.
После нормализации двух векторов до единичной длины скалярные произведения выражают косинус угла между ними. Мы формально введем это понятие длины позже в этом разделе.
1.3.8 Матрично-векторные произведения
Теперь, когда мы знаем, как вычислять скалярные произведения, мы можем начать понимать произведения матрица-вектор. Напомним матрицу A ∈ Rm×n и вектор x ∈ Rn, определенные и визуализированные в (2.3.2) и (2.3.1), соответственно. Начнем с визуализации матрицы A в терминах ее векторов-строк
А = {aTi},                                                                       (2.3.5)
где каждый a⊤i ∈ Rn - вектор-строка, представляющая i-ю строку матрицы A. Произведение матрицы-вектора Ax - это просто вектор-столбец длины m, i-й элемент которого является скалярным произведением aTi x:
Ax = {aTi}x = {aTix},                                                     (2.3.6)
Мы можем думать об умножении на матрицу A ∈ Rm × n как о преобразовании, которое проецирует векторы из Rn в Rm. Эти преобразования оказываются чрезвычайно полезными. Например, мы можем представить повороты как умножение на квадратную матрицу. Как мы увидим в последующих лекциях, мы также можем использовать произведение матрица-вектор для описания наиболее интенсивных вычислений, требуемых при вычислении каждого слоя в нейронной сети с учетом значений предыдущего слоя.
Выражая произведение матрица-вектор в коде с тензорами, мы используем ту же точечную функцию, что и для скалярных произведений. Когда мы вызываем np.dot (A, x) с матрицей A и вектором x, выполняется произведение матрицы на вектор. Обратите внимание, что размер столбца A (его длина по оси 1) должен быть таким же, как размер x (его длина).
A.shape, x.shape, np.dot(A, x)
((5, 4), (4,), array([ 14., 38., 62., 86., 110.]))


1.3.9 Умножение матрицы на матрицу
Если вы привыкли к скалярным произведениям и произведениям матрица-вектор, умножение матрицы на матрицу должно быть простым.
Скажем, у нас есть две матрицы A ∈ Rn × k и B ∈ Rk × m:
A = {aij}, B = {bij}/                                          (2.3.7)
Обозначим через a⊤i ∈ Rk вектор-строку, представляющую i-ю строку матрицы A, и пусть bj ∈ Rk - вектор-столбец из j-го столбца матрицы B. Чтобы получить матричное произведение C = AB, проще всего представить A в терминах его векторов-строк, а B в терминах его векторов-столбцов:
А = {aTi}, B = {bj}.                                         (2.3.8)
Затем получается матричное произведение C ∈ Rn × m, поскольку мы просто вычисляем каждый элемент cij как скалярное произведение aTi bj :
C = AB = {aTi}{bj} = {aTi bj},                         (2.3.9)
Мы можем представить себе умножение матрицы на матрицу AB как простое выполнение m произведений матрица-вектор и сшивание результатов вместе, чтобы сформировать матрицу размера n × m. В следующем фрагменте мы выполняем умножение матриц на A и B. Здесь A - это матрица с 5 строками и 4 столбцами, а B - матрица с 4 строками и 3 столбцами. После умножения получаем матрицу с 5 строками и 3 столбцами.
B = np.ones (shape = (4, 3))
np.dot (A, B)
array ([[6., 6., 6.],
[22., 22., 22.],
[38., 38., 38.],
[54., 54., 54.],
[70., 70., 70.]])

Умножение матрицы на матрицу можно просто назвать умножением матриц, и его не следует путать с произведением Адамара.
1.3.10  Нормы
Некоторые из наиболее полезных операторов линейной алгебры - это нормы. Неформально норма вектора говорит нам, насколько велик вектор. Рассматриваемое здесь понятие размера касается не размерности, а, скорее, величины компонентов.
В линейной алгебре векторная норма - это функция f, которая отображает вектор в скаляр, удовлетворяя нескольким свойствам. Для любого вектора x первое свойство говорит, что если мы масштабируем все элементы вектора с постоянным коэффициентом α, его норма также масштабируется на абсолютное значение того же постоянного коэффициента:
f (αx) = | α | f (x).                                               (2.3.10)
Второе свойство - это известное неравенство треугольника:
е (х + у) ≤ е (х) + е (у).                                    (2.3.11)
Третье свойство просто говорит о том, что норма должна быть неотрицательной:
f (x) ≥ 0.                                                           (2.3.12)
Это имеет смысл, поскольку в большинстве случаев наименьший размер для чего-либо равен 0. Последнее свойство требует, чтобы наименьшая норма достигалась и достигалась только вектором, состоящим из всех нулей.
∀i, [x] i = 0 ⇔ f (x) = 0.                                  (2.3.13)
Вы могли заметить, что нормы очень похожи на меры расстояния. И если вы вспомните евклидовы расстояния (вспомните теорему Пифагора) еще в начальной школе, тогда концепции неотрицательности и неравенства треугольника могут быть звонком. Фактически, евклидово расстояние - это норма: в частности, это норма L2. Предположим, что элементами n-мерного вектора x являются x1,. , , , xn. L2-норма x - это квадратный корень из суммы квадратов элементов вектора:
∥x∥22 = Σni = 1x2i,                                                 (2.3.14)
где индекс 2 часто опускается в нормах L2, т.е. i.e. ∥x∥ эквивалентно ∥x∥2. В коде мы можем вычислить L2-норму вектора следующим образом.
u = np.array([3, -4])
np.linalg.norm(u)
array(5.).

В глубоком обучении мы чаще работаем с квадратом нормы L2. Вы также часто будете сталкиваться с нормой L1, которая выражается как сумма абсолютных значений элементов вектора:
∥x∥1 = Σni = 1 |xi |,                                         (2.3.15)
По сравнению с нормой L2, на нее меньше влияют выбросы. Чтобы вычислить норму L1, мы составляем функцию абсолютного значения с суммой по элементам.
np.abs(u).sum()
array(7.)

И норма L2, и норма L1 являются частными случаями более общей нормы Lp:
∥x∥p = (Σni = 1xpi )1 / р,                                           (2.3.16)
Аналогично L2 нормам векторов, норма Фробениуса матрицы X ∈ Rm × n - квадратный корень из суммы квадратов элементов матрицы:
∥X∥2F = Σmi = 1 Σnj = 1x2ij.                                      (2.3.17)
Норма Фробениуса удовлетворяет всем свойствам векторных норм. Онf ведет себя так, как если бы он был нормой L2 матричного вектора. Вызов следующей функции вычислит норму Фробениуса матрицы.
np.linalg.norm(np.ones((4, 9)))
array(6.)

Нормы и цели
Хотя мы не хотим забегать слишком далеко вперед, мы уже можем привить некоторую интуицию о том, почему эти концепции полезны. В глубоком обучении мы часто пытаемся решить проблемы оптимизации: максимизировать вероятность, присвоенную наблюдаемым данным; минимизировать расстояние между предсказаниями и достоверными наблюдениями. Назначьте векторные представления элементам (например, словам, продуктам или новостным статьям), чтобы расстояние между похожими элементами было минимальным, а расстояние между разными элементами было максимальным. Часто цели, возможно, наиболее важные компоненты алгоритмов глубокого обучения (помимо данных), выражаются в виде норм.
1.3.11 Подробнее о линейной алгебре
В этом разделе мы научили вас всей линейной алгебре, которая вам понадобится для понимания замечательной части современного глубокого обучения. Линейная алгебра - это гораздо больше, и многое из этой математики полезно для машинного обучения. Например, матрицы можно разложить на факторы, и эти разложения могут выявить низкоразмерную структуру в реальных наборах данных.
Есть целые подполя машинного обучения, которые сосредоточены на использовании разложения матриц и их обобщений для тензоров высокого порядка для обнаружения структуры в наборах данных и решения задач прогнозирования. Но эта курс посвящен глубокому обучению. И мы считаем, что вы будете гораздо более склонны изучать больше математики, если запачкаете руки, развертывая полезные модели машинного обучения на реальных наборах данных. Так что, хотя мы оставляем за собой право представить больше математики немного позже, мы завершим этот раздел здесь.
Если вы хотите узнать больше о линейной алгебре, вы можете обратиться к онлайн-приложению по линейным алгебраическим операциям или другим отличным ресурсам (Strang, 1993; Kolter, 2008; Petersen и др., 2008).
Резюме
· Скаляры, векторы, матрицы и тензоры являются основными математическими объектами в линейной алгебре.
· Векторы обобщают скаляры, а матрицы обобщают векторы.
· Скаляры, векторы, матрицы и тензоры имеют ноль, одну, две и произвольное количество осей соответственно.
· Тензор можно уменьшить по указанным осям на сумму и среднее значение.
· Поэлементное умножение двух матриц называется их произведением Адамара. Это отличается от умножения матриц.
· В глубоком обучении мы часто работаем с такими нормами, как норма L1, норма L2 и норма Фробениуса.
· Мы можем выполнять различные операции над скалярами, векторами, матрицами и тензорами.
Упражнения
1. Докажите, что транспонированная матрица Aʼs транспонирована как A: (A⊤)⊤ = A.
2. Для двух матриц A и B покажите, что сумма транспонирования равна транспонированию суммы: A⊤ + B⊤ = (A + B)⊤.
3. Для любой квадратной матрицы A всегда ли A + A⊤ симметрична? Почему?
4. В этом разделе мы определили тензор X формы (2, 3, 4). Что выводит len(X)?
5. Для тензора X произвольной формы всегда ли len (X) соответствует длине определенной оси X? Что это за ось?
6. Запустите A / A.sum (ось = 1) и посмотрите, что произойдет. Можете ли вы проанализировать причину?
7. Когда вы путешествуете между двумя точками Манхэттена, какое расстояние вам нужно преодолеть с точки зрения координат, т.е. с точки зрения проспектов и улиц? Можете ли вы путешествовать по диагонали?
8. Рассмотрим тензор формы (2, 3, 4). Каковы формы результатов суммирования по осям 0, 1 и 2?
9. Подайте тензор с 3 или более осями в функцию linalg.norm и наблюдайте за ее выходом. Что эта функция вычисляет для тензоров произвольной формы?
Обсуждение (см. https://discuss.d2l.ai/t/30)
1.4 Исчисление
Определение площади многоугольника оставалось загадкой, по крайней мере, 2500 лет назад, когда древние греки разделили многоугольник на треугольники и суммировали их площади. Чтобы найти область изогнутых форм, таких как круг, древние греки вписывали многоугольники в такие формы. Как показано на рис. 2.4.1, вписанный многоугольник с большим количеством сторон равной длины лучше аппроксимирует круг. Этот процесс также известен как метод истощения.
Фактически, именно метод исчерпания является источником интегрального исчисления (будет описано в разделе 18.5). Более чем 2000 лет спустя была изобретена другая ветвь исчисления - дифференциальное исчисление. Среди наиболее важных приложений дифференциального исчисления задачи оптимизации рассматривают, как сделать что-то лучше всего. Как обсуждалось в разделе 2.3.10, такие проблемы повсеместны в глубоком обучении.
При глубоком обучении мы обучаем модели, последовательно обновляя их, чтобы они становились все лучше и лучше по мере того, как они видят все больше и больше данных. Обычно улучшение означает минимизацию функции потерь - показателя, который отвечает на вопрос «насколько плоха наша модель?» Этот вопрос более тонкий, чем кажется.
В конечном итоге нас действительно волнует создание модели, которая хорошо работает с данными, которых мы никогда раньше не видели. Но мы можем подогнать модель только под те данные, которые мы действительно видим. Таким образом, мы можем разделить задачу подгонки моделей на две ключевые задачи: i) оптимизация: процесс подгонки наших моделей к наблюдаемым данным; ii) обобщение: математические принципы и практическая мудрость, которые определяют, как создавать модели, достоверность которых выходит за рамки точного набора точек данных, используемых для их обучения.
Чтобы помочь вам разобраться в проблемах и методах оптимизации в последующих главах, мы дадим очень краткое руководство по дифференциальному исчислению, которое обычно используется в глубоком обучении.
1.4.1 Производные и дифференциация
Мы начнем с вычисления производных, что является важным шагом практически во всех алгоритмах оптимизации глубокого обучения. В глубоком обучении мы обычно выбираем функции потерь, дифференцируемые по параметрам нашей модели. Проще говоря, это означает, что для каждого параметра мы можем определить, насколько быстро убытки увеличатся или уменьшатся, если мы увеличим или уменьшим этот параметр на бесконечно малую величину.
Предположим, что у нас есть функция f: R → R, вход и выход которой являются скалярами. Производная функции f определяется как
f'(x) = limh->0 (f(x + h) – f(x))/h,                         (1.4.1)
если этот предел существует. Если f'(a) существует, f называется дифференцируемой в точке a. Если f дифференцируема в каждой точке интервала, то эта функция дифференцируема на этом интервале. Мы можем интерпретировать производная f'(x) в (2.4.1) как мгновенную скорость изменения f (x) по отношению к x. Так называемая мгновенная скорость изменения основана на изменении h в x, которое приближается к 0.
Чтобы проиллюстрировать производные, давайте поэкспериментируем на примере. Определим u = f (x) = 3x2 - 4х.
%matplotlib inline
from d2l import mxnet as d2l
from IPython import display
from mxnet import np, npx
npx.set_np()
def f(x):
return 3 * x ** 2 - 4 * x

Если установить x = 1 и приблизить h к 0, численный результат (f (x + h) −f (x))/h в (2.4.1) приближается 2. Хотя этот эксперимент не является математическим доказательством, позже мы увидим, что производная u' равен 2, когда x = 1.
def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h = 0.1
for i in range(5):
print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
h *= 0.1
h = 0,10000, числовой предел = 2,30000
h = 0,01000, числовой предел = 2,03000
h = 0,00100, числовой предел = 2,00300
h = 0,00010, числовой предел = 2,00030
h = 0,00001, числовой предел = 2,00003

Ознакомимся с несколькими эквивалентными обозначениями для производных. Дано y = f (x), где x и y - независимая переменная и зависимая переменная функции f соответственно.
Следующие выражения эквивалентны:
f'(х) = у' = dy/dx = df/dx = d/dx f(x) =  Df (x) = Dxf (x),          (1.4.2)
где символы d/dx и D - операторы дифференцирования, обозначающие операцию дифференцирования. Мы можем использовать следующие правила, чтобы различать общие функции:
· DC = 0 (C - постоянная),
· Dxn = nxn − 1
· (правило степени, n - любое действительное число),
· Dex = ex,
· D ln (x) = 1 / x.
Чтобы отличить функцию, состоящую из нескольких более простых функций, таких как перечисленные выше общие функции, нам могут быть полезны следующие правила. Предположим, что функции f и g дифференцируемы, а C - константа, у нас есть правило однородности
d/dx [Cf (x)] = Cd/dx f (x),                                             (2.4.3)
правило аддиивности
d/dx [f (x) + g (x)] = d/dxf (x) + d/dxg (x),                    (1.4.4)
правило произведения
d/dx [f (x) g (x)] = f (x)d/dx [g (x)] + g (x)d/dx [f (x)],  (1.4.5)
и правило частного
d/dx [F (X)/g(х)] = (g(х)d/dx [f (x)] - f (x)d/dx [g (x)])/[g (х)]2,     (1.4.6)
Теперь мы можем применить несколько из приведенных выше правил, чтобы найти u′ = f'(х) = 3 d/dx x2–4 d/dx x = 6x - 4. Таким образом, установив x = 1, мы имеем u ′ = 2: это подтверждается нашим предыдущим экспериментом в этом разделе, где численный результат приближается к 2. Эта производная также является наклоном касательной к кривая u = f (x) при x = 1.
Чтобы визуализировать такую ​​интерпретацию производных, мы будем использовать matplotlib, популярную библиотеку построения графиков в Python. Чтобы настроить свойства фигур, созданных matplotlib, нам нужно определить несколько функций. Далее функция use_svg_display указывает пакет matplotlib для вывода цифр svg для более четких изображений.
def use_svg_display(): #@save
"" "Используйте формат svg для отображения графика в Jupyter." ""
display.set_matplotlib_formats('svg')
Мы определяем функцию set_figsize, чтобы указать размеры фигур. Обратите внимание, что здесь мы напрямую используем d2l.plt, поскольку оператор импорта из matplotlib import pyplot as plt был отмечен для сохранения в пакете d2l в предисловии.
def set_figsize(figsize=(3.5, 2.5)): #@save
"" "Установить размер рисунка для matplotlib." ""
use_svg_display()
d2l.plt.rcParams['figure.figsize'] = figsize

Следующая функция set_axes устанавливает свойства осей фигур, созданных matplotlib.
#@save
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""Set the axes for matplotlib."""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:
axes.legend(legend)
axes.grid()

С помощью этих трех функций для конфигураций фигур мы определяем функцию построения графика для лаконичного построения нескольких кривых, поскольку нам нужно будет визуализировать множество кривых по всему курсу.
#@save
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
"""Plot data points."""
if legend is None:
legend = []
set_figsize(figsize)
axes = axes if axes else d2l.plt.gca()
# Return True if `X` (tensor or list) has 1 axis
def has_one_axis(X):
return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
and not hasattr(X[0], "__len__"))
if has_one_axis(X):
X = [X]
if Y is None:
X, Y = [[]] * len(X), X
elif has_one_axis(Y):
Y = [Y]
if len(X) != len(Y):
X = X * len(Y)
axes.cla()
for x, y, fmt in zip(X, Y, fmts):
if len(x):
axes.plot(x, y, fmt)
else:
axes.plot(y, fmt)
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)

Теперь мы можем построить график функции u = f (x) и ее касательной y = 2x − 3 при x = 1, где коэффициент 2 - наклон касательной.
x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])
(График см. в книге)
1.4.2 Частные производные
До сих пор мы имели дело с дифференцированием функций только одной переменной. В глубоком обучении функции часто зависят от многих переменных. Таким образом, нам необходимо распространить идеи дифференцирования на эти многомерные функции.
Пусть y = f (x1, x2, ..., xn) - функция от n переменных. Частная производная y по i-му параметру xi равна
∂y/∂xi = limh → 0 [f (x1,..., xi − 1, xi + h, xi + 1,..., xn) – 
                            f (x1,...., xi,. , , , xn)]/h,                                (1.4.7)

Чтобы вычислить ∂y / ∂xi, мы можем просто рассматривать x1,. , , , xi − 1, xi + 1,. , , , xn как константы и вычислим производную y по xi. Для обозначения частных производных следующие значения эквивалентны:
∂y/∂xi = ∂f/∂xi = fxi = fi = Dif = Dxif.                                 (1.4.8)
1.4.3 Градиенты
Мы можем объединить частные производные функции многих переменных по всем ее переменным, чтобы получить вектор градиента функции. Предположим, что вход функции f: Rn → R – это n-мерный вектор x = [x1, x2,. , , , xn]⊤ и результат - скаляр. Градиент функции f (x) по x является вектором n частных производных:
∇xf (x) = [∂f (х)/∂x1, ∂f (х)/∂x2,. , , , ∂f (х)/∂xn]⊤,          (1.4.9)
где ∇xf (x) часто заменяется на ∇f (x), когда нет неоднозначности.
Пусть x будет n-мерным вектором, при дифференцировании многомерных функций часто используются следующие правила:
• Для всех A ∈ Rm × n, ∇xAx = A⊤,
• Для всех A ∈ Rn × m, ∇xx⊤A = A,
• Для всех A ∈ Rn × n, ∇xx⊤Ax = (A + A⊤) х,
• ∇x∥x∥2 = ∇xx⊤x = 2x.
Аналогично для любой матрицы X имеем ∇X∥X∥2F = 2X. Как мы увидим позже, градиенты полезны для разработки алгоритмов оптимизации в глубоком обучении.
1.4.4 Цепное правило
Однако найти такие градиенты бывает сложно. Это связано с тем, что многомерные функции в глубоком обучении часто являются составными, поэтому мы не можем применять какие-либо из вышеупомянутых правил, чтобы различать эти функции. К счастью, цепное правило позволяет нам различать составные функции.
Давайте сначала рассмотрим функции одной переменной. Предположим, что функции y = f (u) и u = g (x), обt дифференцируемы, то цепное правило гласит, что
dу/dx = dу/du du/dх.                                                     (1.4.10)
Теперь давайте обратим внимание на более общий сценарий, в котором функции имеют произвольное количество переменных. Предположим, что дифференцируемая функция y имеет переменные u1, u2,. , , , um, где каждая дифференцируемая функция ui имеет переменные x1, x2,. , , , xn. Обратите внимание, что y является функцией x1, x2,. , , , xn. Тогда цепное правило дает
∂у/∂хi = ∂у/∂u1 ∂u1/∂хi + ∂у/∂u2 ∂u2/∂хi + · · · + ∂у/∂уm ∂уm/∂хi     (2.4.11)
для любого i = 1, 2,. , , , п.
Резюме
· Дифференциальное исчисление и интегральное исчисление - это две ветви исчисления, где первое может быть применено к повсеместным задачам оптимизации в глубоком обучении.
· Производная может интерпретироваться как мгновенная скорость изменения функции по отношению к ее переменной. Это также наклон касательной к кривой функции.
· Градиент - это вектор, компоненты которого являются частными производными функции многих переменных по всем ее переменным.
· Цепное правило позволяет нам различать составные функции.
Упражнения
1. Постройте график функции y = f (x) = x3 – 1/x и его касательная при x = 1.
2. Найдите градиент функции f (x) = 3x21 + 5ex2,
3. Каков градиент функции f (x) = ∥x∥2?
4. Можете ли вы написать цепное правило для случая, когда u = f (x, y, z) и x = x (a, b), y = y (a, b) и z = z (a, b) )?
Обсуждение (см. https://discuss.d2l.ai/t/32)
1.5 Автоматическая дифференциация
Как мы объясняли в разделе 2.4, дифференциация является важным шагом почти во всех алгоритмах оптимизации глубокого обучения. Хотя расчеты для взятия этих производных просты, требуя только некоторых базовых расчетов, для сложных моделей разработка обновлений вручную может быть болезненной (и часто подверженной ошибкам).
Фреймворки глубокого обучения ускоряют эту работу, автоматически вычисляя производные, то есть автоматическое дифференцирование. На практике, на основе разработанной нами модели система строит вычислительный график, отслеживающий, какие данные были объединены, с помощью каких операций производился результат Автоматическая дифференциация позволяет системе впоследствии распространять градиенты в обратном направлении. Здесь обратное распространение просто означает проследить через вычислительный граф, заполняя частные производные по каждому параметру.
from mxnet import autograd, np, npx
npx.set_np()

1.5.1 Простой пример
В качестве игрушечного примера предположим, что нас интересует дифференцирование функции y = 2x⊤x относительно вектора-столбца x. Для начала создадим переменную x и присвоим ей начальное значение.
x = np.arange(4.0)
x
array([0., 1., 2., 3.])

Прежде чем мы даже вычислим градиент y относительно x, нам понадобится место для его хранения. Важно, чтобы мы не выделяли новую память каждый раз, когда берем производную по параметру, потому что мы часто будем обновлять одни и те же параметры тысячи или миллионы раз и можем быстро исчерпать память. Обратите внимание, что градиент скалярной функции по отношению к вектору x сам является векторным и имеет ту же форму, что и x.
# Мы выделяем память для тензорного градиента, вызывая `attach_grad`
x.attach_grad ()
# После того, как мы вычислим градиент, взятый по отношению к `x`, мы сможем 
# получить к нему доступ через атрибут` grad`, значения которого инициализируются нулями
x.grad
array([0., 0., 0., 0.])

Теперь посчитаем y.
# Поместите наш код в область видимости `autograd.record` для построения вычислительного # графа с помощью autograd.record ():
y = 2 * np.dot(x, x)
y
array(28.)

Поскольку x - вектор длины 4, выполняется внутреннее произведение x и x, в результате чего получается скалярный результат, который мы назначаем y. Затем мы можем автоматически вычислить градиент y по отношению к каждому компоненту x, вызвав функцию обратного распространения и распечатав градиент.
y.backward()
x.grad
array([ 0., 4., 8., 12.])

Градиент функции y = 2x⊤x относительно x должен быть 4x. Давайте быстро убедимся, что желаемый градиент был рассчитан правильно.
x.grad == 4 * x
array([ True, True, True, True])

Теперь давайте вычислим другую функцию от x с помощью autograd.record ():
y = x.sum ()
y.backward ()
x.grad 
# Заменяется вновь вычисленным градиентом
array ([1., 1., 1., 1.])

1.5.2 Назад для нескалярных переменных
Технически, когда y не является скаляром, наиболее естественной интерпретацией дифференцирования вектора y относительно вектора x является матрица. Для высших и многомерных y и x результатом дифференцирования может быть тензор высокого порядка.
Однако, хотя эти более экзотические объекты действительно обнаруживаются в расширенном машинном обучении (в том числе в глубоком обучении), чаще, когда мы обращаемся к вектору в обратном направлении, мы пытаемся вычислить производные функций потерь для каждой составляющей пакета обучающие примеры. Здесь наша цель не в том, чтобы вычислить матрицу дифференцирования, а в том, чтобы вычислить сумму частных производных, рассчитанных индивидуально для каждого примера в пакете.
# Когда мы вызываем `backward` для векторной переменной` y` (функция `x`),
# создается новая скалярная переменная путем суммирования элементов в `y`. Затем
# вычисляется градиент этой скалярной переменной относительно `x`
with autograd.record ():
y = x * x # `y` - вектор
y.backward ()
x.grad # Равно y = sum (x * x)
array ([0., 2., 4., 6.])

1.5.3 Отсоединение вычислений
Иногда мы хотим вывести некоторые вычисления за пределы записанного вычислительного графа. Например, предположим, что y был вычислен как функция от x, а затем z был вычислен как функция как y, так и x. Теперь представьте, что мы хотели вычислить градиент z относительно x, но по какой-то причине хотели рассматривать y как константу и принимать во внимание только ту роль, которую x играл после вычисления y.
Здесь мы можем отделить y, чтобы вернуть новую переменную u, которая имеет то же значение, что и y, но отбрасывает любую информацию о том, как y был вычислен в вычислительном графе. Другими словами, градиент не будет течь назад через u к x. Таким образом, следующая функция обратного распространения ошибки вычисляет частную производную z = u * x по x, рассматривая u как константу, вместо частной производной z = x * x * x по x.
with autograd.record():
y = x * x
u = y.detach()
z = u * x
z.backward()
x.grad == u
array([ True, True, True, True])

Поскольку вычисление y было записано, мы можем впоследствии вызвать обратное распространение по y, чтобы получить производную y = x * x по x, которая равна 2 * x.
y.backward()
x.grad == 2 * x
array([ True, True, True, True])

Вычисление градиента потока управления Python
Одно из преимуществ использования автоматического дифференцирования заключается в том, что даже если для построения вычислительного графика функции требуется пройти через лабиринт потока управления Python (например, условные выражения, циклы и произвольные вызовы функций), мы все равно можем вычислить градиент результирующей переменной. В следующем фрагменте обратите внимание, что количество итераций цикла while и оценка оператора if зависят от значения ввода a.
def f(a):
b = a * 2
while np.linalg.norm(b) < 1000:
b = b * 2
if b.sum() > 0:
c = b
else:
c = 100 * b
return c

Рассчитаем градиент.
a = np.random.normal()
a.attach_grad()
with autograd.record():
d = f(a)
d.backward()

Теперь мы можем проанализировать определенную выше функцию f. Обратите внимание, что он кусочно линейен по входу a. Другими словами, для любого a существует некоторый постоянный скаляр k такой, что f (a) = k* a, где значение k зависит от входа a. Следовательно, d / a позволяет нам проверить правильность градиента.
a.grad == d / a
array(True)

Резюме
· Фреймворки глубокого обучения могут автоматизировать расчет производных. Чтобы использовать его, мы сначала прикрепляем градиенты к тем переменным, по которым нам нужны частные производные. Затем мы записываем вычисление нашего целевого значения, выполняем его функцию для обратного распространения и получаем доступ к полученному градиенту.
Упражнения
1. Почему вычислить вторую производную намного дороже, чем первую?
2. После запуска функции обратного распространения ошибки немедленно запустите ее снова и посмотрите, что произойдет.
3. В примере потока управления, где мы вычисляем производную d по a, что произойдет, если мы изменим переменную a на случайный вектор или матрицу. На этом этапе результат вычисления f (a) больше не является скаляром. Что происходит с результатом? Как мы это проанализируем?
4. Перепроектируйте пример нахождения градиента потока управления. Запускаем и анализируем результат.
5. Пусть f (x) = sin (x). Постройте график f (x) и df (x)/dx, где последний вычисляется без использования этого f'(х) = соз (х).
Обсуждение (см. https://discuss.d2l.ai/t/34)
1.6 Вероятность
В той или иной форме машинное обучение предназначено для прогнозирования. Возможно, мы захотим предсказать вероятность сердечного приступа в следующем году у пациента, учитывая его историю болезни. При обнаружении аномалий мы могли бы захотеть оценить, насколько вероятным будет набор показаний реактивного двигателя самолета, если бы он работал нормально. В обучении с подкреплением мы хотим, чтобы агент действовал разумно в среде. Это означает, что нам нужно подумать о вероятности получения высокой награды за каждое из доступных действий. И когда мы создаем рекомендательные системы, мы также должны думать о вероятности. Например, предположим гипотетически, что мы работали на крупного онлайн-продавца книг. Мы можем захотеть оценить вероятность того, что конкретный пользователь купит конкретную книгу. Для этого нам нужно использовать язык вероятностей. Целые курсы, специальности, диссертации, карьеры и даже факультеты посвящены теории вероятностей. Поэтому, естественно, наша цель в этом разделе - не обучить всему предмету. Вместо этого мы надеемся поднять вас с мертвой точки, научить вас ровно на столько, чтобы вы могли начать создавать свои первые модели глубокого обучения, и дать вам достаточно представления о предмете, чтобы вы могли начать его самостоятельно, если хотите.
Мы уже ссылались на вероятности в предыдущих разделах, не формулируя, что именно они делают, и не приводя конкретного примера. Давайте теперь посерьезнее рассмотрим первый случай: различение кошек и собак по фотографиям. Это может показаться простым, но на самом деле это серьезная проблема. Начнем с того, что сложность проблемы может зависеть от разрешения изображения.
[image: ]

Рис. 1.6.1: Изображения разного разрешения (10 × 10, 20 × 20, 40 × 40, 80 × 80 и 160 × 160 пикселей).
Как показано на рис. 1.6.1, хотя людям легко распознать кошек и собак при разрешении 160 × 160 пикселей, это становится сложной задачей при разрешении 40 × 40 пикселей и почти невозможным при разрешении 10 × 10 пикселей.
Другими словами, наша способность различать кошек и собак на большом расстоянии (и, следовательно, с низким разрешением) может приближаться к неосведомленным догадкам. Вероятность дает нам формальный способ рассуждать об уровне нашей уверенности. Если мы полностью уверены, что изображение изображает кошку, мы говорим, что вероятность того, что соответствующая метка y будет «кошка», обозначенная P (y = «кошка»), равна 1. Если бы у нас не было доказательств, позволяющих предположить, что y = «кошка» или что y = « собака », то мы могли бы сказать, что эти две возможности с равной вероятностью выражали это как P (y =« кошка ») = P (y =« собака ») = 0,5. Если бы мы были достаточно уверены, но не уверены, что на изображении изображена кошка, мы могли бы присвоить вероятность 0,5 < P (y = «кошка») <1.
Теперь рассмотрим второй случай: учитывая некоторые данные мониторинга погоды, мы хотим спрогнозировать вероятность того, что завтра в Тайбэе пойдет дождь. Летом с вероятностью 0,5 может пойти дождь.
В обоих случаях у нас есть некоторая ценность. И в обоих случаях мы не уверены в исходе. Но между этими двумя случаями есть ключевое различие. В этом первом случае изображение на самом деле либо собака, либо кошка, и мы просто не знаем, что именно. Во втором случае результатом может быть случайное событие, если вы верите в такие вещи (а большинство физиков верят). Таким образом, вероятность - это гибкий язык для рассуждений об уровне нашей уверенности, и его можно эффективно применять в широком наборе контекстов.
1.6.1 Основная теория вероятностей
Допустим, мы бросаем кубик и хотим знать, каковы шансы увидеть 1, а не другую цифру.
Если кубик правильный, все шесть исходов {1,. , , , 6} одинаково вероятны, и, таким образом, мы увидим 1 в каждом из шести случаев. Формально мы утверждаем, что 1 встречается с вероятностью 1/6.
Для настоящего штампа, который мы получаем с завода, мы можем не знать этих пропорций, и нам нужно будет проверить, не испорчен ли он. Единственный способ исследовать кубик - это бросить его много раз и записать результаты. Для каждого броска кубика мы будем наблюдать значение из {1,. , , , 6}. Учитывая эти результаты, мы хотим исследовать вероятность наблюдения каждого результата.
Один естественный подход для каждого значения - взять индивидуальный счет для этого значения и разделить его на общее количество бросков. Это дает нам оценку вероятности данного события. Закон больших чисел говорит нам, что по мере роста числа бросков эта оценка будет приближаться к истинной основной вероятности. Прежде чем вдаваться в подробности того, что здесь происходит, давайте попробуем.
Для начала импортируем необходимые пакеты.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import np, npx
import random
npx.set_np()

Затем мы захотим бросить кубик. В статистике мы называем этот процесс рисования примеров на основе выборки распределений вероятностей. Распределение, приписывающее вероятности нескольким дискретным вариантам выбора, называется полиномиальным распределением. Позже мы дадим более формальное определение распределения, но, на более высоком уровне, думайте о нем как о простом присвоении вероятностей событиям.
Чтобы нарисовать одну выборку, мы просто передаем вектор вероятностей. Результатом является другой вектор такой же длины: его значение в индексе i - это количество раз, которое результат выборки соответствует i.
fair_probs = [1.0 / 6] * 6
np.random.multinomial (1, fair_probs)
array ([0, 0, 0, 1, 0, 0], dtype = int64)

Если вы запустите семплер несколько раз, вы обнаружите, что каждый раз получаете случайные значения.
Как и при оценке справедливости игральной кости, мы часто хотим сгенерировать множество выборок из одного и того же распределения. Было бы невыносимо медленно делать это с помощью цикла for языка Python, поэтому функция, которую мы используем, поддерживает одновременное рисование нескольких образцов, возвращая массив независимых образцов в любой форме, которую мы можем пожелать.
np.random.multinomial (10, fair_probs)
array ([1, 1, 5, 1, 1, 1], dtype = int64)

Теперь, когда мы знаем, как делать выборку бросков кубика, мы можем моделировать 1000 бросков. Затем мы можем пройти и посчитать после каждого из 1000 бросков, сколько раз выпало каждое число. В частности, мы вычисляем относительную частоту как оценку истинной вероятности.
counts = np.random.multinomial(1000, fair_probs).astype(np.float32)
counts / 1000
array([0.162, 0.149, 0.178, 0.17 , 0.166, 0.175])

Поскольку мы сгенерировали данные из точного кубика, мы знаем, что каждый исход имеет истинную вероятность 1/6, примерно 0,167, поэтому приведенные выше оценки выходных данных выглядят хорошо.
Мы также можем визуализировать, как эти вероятности сходятся со временем к истинной вероятности. Проведем 500 групп экспериментов, по 10 проб в каждой.
counts = np.random.multinomial(10, fair_probs, size=500)
cum_counts = counts.astype(np.float32).cumsum(axis=0)
estimates = cum_counts / cum_counts.sum(axis=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i].asnumpy(),
label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();

Каждая сплошная кривая соответствует одному из шести значений кубика и дает нашу оценку вероятности того, что кубик вернет это значение после каждой группы экспериментов. Пунктирная черная линия дает истинную основную вероятность. По мере того, как мы получаем больше данных, проводя больше экспериментов, 6 сплошных кривых сходятся к истинной вероятности. (см. рисунок в книге)
Аксиомы теории вероятностей
Имея дело с бросками кубика, мы называем набор S = {1, 2, 3, 4, 5, 6} пространством выборки или пространством результатов, где каждый элемент является результатом. Событие - это набор результатов из заданного пространства выборки.
Например, «увидеть 5» ({5}) и «увидеть нечетное число» ({1, 3, 5}) являются действительными событиями при броске кости. Обратите внимание, что если результатом случайного эксперимента является событие A, то событие A произошло. Другими словами, если 3 точки смотрят вверх после броска кубика, поскольку 3 ∈ {1, 3, 5}, мы можем сказать, что произошло событие «увидеть нечетное число».
Формально вероятность можно представить как функцию, которая отображает набор в реальное значение. Вероятность события A в данном пространстве отсчетов S, обозначенная как P (A), удовлетворяет следующим свойствам:
• Для любого события A его вероятность никогда не бывает отрицательной, т.е. P (A) ≥ 0;
• Вероятность всего пространства выборок равна 1, т. е. P (S) = 1;
• Для любой счетной последовательности событий A1, A2,. , , которые являются взаимоисключающими (Ai∩Aj = ∅ для всех i  ̸ = j), вероятность того, что что-либо произойдет, равна сумме их индивидуальных вероятностей, то есть P (∪∞i = 1 Ai) = ∑∞i = 1 P (Ai).
Это также аксиомы теории вероятностей, предложенной Колмогоровым в 1933 году. Благодаря этой системе аксиом мы можем избежать любого философского спора о случайности; вместо этого мы можем строго рассуждать с помощью математического языка. Например, позволяя событию A1 быть всем пространством выборок и Ai = ∅ для всех i> 1, мы можем доказать, что P (∅) = 0, т.е. вероятность невозможного события равна 0.
Случайные переменные
В нашем случайном эксперименте по бросанию кости мы ввели понятие случайной величины. Случайная величина может быть практически любой величиной и не является детерминированной. Оно может принимать одно значение из набора возможных в случайном эксперименте. Рассмотрим случайную величину X, значение которой находится в пространстве выборки S = ​​{1, 2, 3, 4, 5, 6} прокатки матрицы. Мы можем обозначить событие «увидеть пятерку» как {X = 5} или X = 5, а его вероятность как P ({X = 5}) или P (X = 5). Используя P (X = a), мы делаем различие между случайной величиной X и значениями (например, a), которые может принимать X. Однако такая педантичность приводит к громоздким обозначениям. Для компактной записи, с одной стороны, мы можем просто обозначить P (X) как распределение вероятностей случайной величине X: распределение сообщает нам вероятность того, что X принимает любое значение. С другой стороны, мы можем просто написать P (a), чтобы обозначить вероятность того, что случайная величина примет значение a. Поскольку событие в теории вероятностей - это набор результатов из выборочного пространства, мы можем указать диапазон значений для случайной переменной. Например, P (1 ≤ X ≤ 3) обозначает вероятность события {1 ≤ X ≤ 3}, что означает {X = 1, 2 или, 3}.
Эквивалентно, P (1 ≤ X ≤ 3) представляет вероятность того, что случайная величина X может принять значение из {1, 2, 3}.
Обратите внимание на небольшую разницу между дискретными случайными величинами, такими как стороны игральной кости, и непрерывными, такими как вес и рост человека. Нет смысла спрашивать, одинакового ли роста у двух людей. Если мы проведем достаточно точные измерения, вы обнаружите, что нет двух людей на планете одинакового роста. Фактически, если мы проведем достаточно точные измерения, вы не будете иметь одинаковый рост, когда просыпаетесь и когда ложитесь спать. Таким образом, нет смысла спрашивать о вероятности того, что рост человека составляет 1,80139278291028719210196740527486202 метра. Учитывая мировую популяцию людей, вероятность практически равна нулю. В этом случае имеет смысл задаться вопросом, попадает ли рост человека в заданный интервал, скажем, от 1,79 до 1,81 метра. В этих случаях мы количественно оцениваем вероятность того, что мы увидим значение как плотность. Высота ровно 1,80 метра не имеет вероятности, но ненулевая
плотность. В промежутке между любыми двумя разными высотами вероятность отлична от нуля. В оставшейся части этого раздела мы рассматриваем вероятность в дискретном пространстве. Для вероятности над непрерывной случайной переменной, вы можете обратиться к Разделу 18.6.
1.6.2 Работа с множеством случайных переменных
Очень часто нам нужно рассматривать более одной случайной величины за раз. Например, мы можем смоделировать взаимосвязь между болезнями и симптомами. Учитывая заболевание и симптом, скажем, «грипп» и «кашель», с некоторой вероятностью у пациента может возникнуть или не возникнуть. Хотя мы надеемся, что вероятность того и другого будет близка к нулю, мы можем захотеть оценить эти вероятности и их взаимосвязь друг с другом, чтобы мы могли применить наши выводы для улучшения медицинского обслуживания.
В качестве более сложного примера изображения содержат миллионы пикселей, то есть миллионы случайных величин. И во многих случаях изображения имеют метку, идентифицирующую объекты на изображении. Мы также можем рассматривать метку как случайную величину. Мы даже можем думать обо всех метаданных как о случайных величинах, таких как местоположение, время, диафрагма, длину фокуса, ISO, фокусное расстояние и тип камеры. Все это случайные величины, возникающие совместно. Когда мы имеем дело с несколькими случайными величинами, нас интересуют несколько величин.
Совместная вероятность
Первая называется совместной вероятностью P (A = a, B = b). Учитывая любые значения a и b, совместная вероятность позволяет нам ответить, какова вероятность того, что A = a и B = b одновременно? Обратите внимание, что для любых значений a и b P (A = a, B = b) ≤ P (A = a). Это должно быть так, поскольку при A = a и B = b, должно произойти A = a, и B = b также должно произойти (и наоборот). Таким образом, A = a и B = b не может быть более вероятным, чем A = a или B = b по отдельности.
Условная возможность
Это приводит нас к интересному соотношению: 0 ≤ P (A = a, B = b)/P (A = a) ≤ 1. Мы называем это отношение условной вероятностью и обозначаем P (B = b | A = a): это вероятность B = b при условии, что A = a произошло.
Теорема Байеса
Используя определение условных вероятностей, мы можем вывести одно из самых полезных и знаменитых уравнений в статистике: теорему Байеса. Это происходит следующим образом. По построению у нас есть правило умножения: P (A, B) = P (B | A) P (A). По симметрии это также верно для P (A, B) = P (A | B) P (B). Предположим, что P (B)> 0. Решая одну из условных переменных, получаем
Р (А | В) = Р (В | А) Р (А) / Р (В).                                    (1.6.1)
Обратите внимание, что здесь мы используем более компактные обозначения, где P (A, B) - совместное распределение, а P (A | B) - условное распределение. Такие распределения можно оценить для конкретных значений A = a, B = b.
Маргинализация
Теорема Байеса очень полезна, если мы хотим вывести одно из другого, скажем, о причине и следствии, но мы знаем свойства только в обратном направлении, как мы увидим позже в этом разделе. Одна важная операция, которая нам нужна, чтобы эта модель работала, - это маргинализация. Это операция определения P (B) из P (A, B). Мы видим, что вероятность B сводится к учету всех возможных вариантов выбора A и агрегированию совместных вероятностей по всем из них:
P (B) = ∑А P (А, В),                                                     (1.6.2)
которое также известно как правило сумм. Вероятность или распределение в результате маргинализации называется предельной вероятностью или предельным распределением.
Независимость
Еще одно полезное свойство, которое следует проверить, - это зависимость и независимость. Независимость двух случайных величин A и B означает, что возникновение одного события A не раскрывает никакой информации о наступлении события B. В этом случае P (B | A) = P (B). Статистики обычно выражают это как A ⊥ B. Из теоремы Байеса сразу следует, что также P (A | B) = P (A).
Во всех остальных случаях мы называем A и B зависимыми. Например, два последовательных броска кубика независимы. Напротив, положение выключателя света и яркость в комнате - нет (хотя они не совсем детерминированы, так как у нас всегда может быть сломанная лампочка, сбой питания или сломанный переключатель).
Поскольку P (A | B) = P (A, B)/P (B) = P (A) эквивалентно P (A, B) = P (A) P (B), две случайные величины независимы тогда и только тогда, когда их совместное распределение является продуктом их индивидуальных распределений.
Точно так же две случайные величины A и B условно независимы для другой случайной величины C тогда и только тогда, когда P (A, B | C) = P (A | C) P (B | C). Это выражается как A ⊥ B | C.
Приложение
Давайте проверим наши навыки. Предположим, что врач проводит тест на СПИД пациенту. Этот тест достаточно точен и не работает с вероятностью 1%, если пациент здоров, но сообщает о нем как о больном. Более того, он всегда может обнаружить ВИЧ, если он действительно есть у пациента. Мы используем D1 для обозначения диагноза (1, если положительный и 0, если отрицательный) и H, чтобы обозначить статус ВИЧ (1, если положительный, и 0, если отрицательный). В таблице 2.6.1 перечислены такие условные вероятности.
Таблица 1.6.1: Условная вероятность P (D1 | H).
	Условная вероятность
	H = 1
	H = 0

	P (D1 = 1 | H)
	1
	0,01

	P (D1 = 0 | H)
	0
	0,99



Обратите внимание, что все суммы столбцов равны 1 (но суммы строк - нет), поскольку условная вероятность должна быть равна 1, как и вероятность. Давайте выясним вероятность того, что у пациента будет СПИД, если тест окажется положительным, то есть P (H = 1 | D1 = 1). Очевидно, это будет зависеть от того, насколько распространено заболевание, поскольку оно влияет на количество ложных срабатываний. Предположим, что население вполне здоровое, например, P (H = 1) = 0,0015. Чтобы применить теорему Байеса, нам нужно применить маргинализацию и правило умножения, чтобы определить
P (D1 = 1) = P (D1 = 1, H = 0) + P (D1 = 1, H = 1)
= P (D1 = 1 | H = 0) P (H = 0) + P (D1 = 1 | H = 1) P (H = 1)
= 0,011485.                                                                                      (1.6.3)

Таким образом, мы получаем
P (H = 1 | D1 = 1) = P (D1 = 1 | H = 1) P (H = 1)/P (D1 = 1) = 0,1306,              (1.6.4)
Другими словами, вероятность того, что у пациента действительно есть СПИД, составляет всего 13,06%, несмотря на использование очень точного теста. Как видим, вероятность может показаться нелогичной.
Что делать пациенту, получив такую ​​ужасающую новость? Скорее всего, пациент попросит врача провести еще один тест, чтобы получить ясность. Второй тест имеет другие характеристики и не так хорош, как первый, как показано в таблице 2.6.2.
Таблица 1.6.2: Условная вероятность P (D2 | H).
	Условная вероятность
	H = 1
	H = 0

	P (D2 = 1 | H)
	0,98
	0,03

	P (D2 = 0 | H)
	0,02
	0,97



К сожалению, второй тест тоже оказался положительным. Давайте рассчитаем необходимые вероятности для вызова теоремы Байеса, предполагая условную независимость:
P (D1 = 1, D2 = 1 | H = 0) = P (D1 = 1 | H = 0) P (D2 = 1 | H = 0) = 0,0003,     (1.6.5)
P (D1 = 1, D2 = 1 | H = 1) = P (D1 = 1 | H = 1) P (D2 = 1 | H = 1) = 0,98.          (1.6.6)
Теперь мы можем применить маргинализацию и правило умножения:
P (D1 = 1, D2 = 1) = P (D1 = 1, D2 = 1, H = 0) + P (D1 = 1, D2 = 1, H = 1)
= P (D1 = 1, D2 = 1 | H = 0) P (H = 0) + P (D1 = 1, D2 = 1 | H = 1) P (H = 1)
= 0,00176955.                                                                                                         (1.6.7)
В конце концов, вероятность того, что у пациента будет СПИД при обоих положительных тестах, равна
P (H = 1 | D1 = 1, D2 = 1) = P (D1 = 1, D2 = 1 | H = 1)
 P (H = 1)/P (D1 = 1, D2 = 1)
= 0,8307.                                                                                              (1.6.8)
То есть второй тест позволил нам получить гораздо большую уверенность в том, что не все хорошо. Несмотря на то, что второй тест был значительно менее точным, чем первый, он все же значительно улучшил нашу оценку.
1.6.3 Ожидания и отклонения
Чтобы суммировать ключевые характеристики вероятностных распределений, нам нужны некоторые меры. Математическое ожидание (или среднее значение) случайной величины X обозначается как
E [X] = ∑ x хР (Х = х).                                                                                  (1.6.9)
Когда входом функции f (x) является случайная величина, полученная из распределения P с разными значениями x, математическое ожидание f (x) вычисляется как
Ex∼P [f (x)] = ∑x f (х) Р (х).                                                                            (1.6.10)
Во многих случаях мы хотим измерить, насколько случайная величина X отклоняется от своего ожидания. Количественно это можно оценить по дисперсии
Var [X] = E[(X - E [X])2] = E [X2] - E [X]2,                                                  (1.6.11)
Его квадратный корень называется стандартным отклонением. Дисперсия функции случайной величины измеряется тем, насколько функция отклоняется от математического ожидания функции, поскольку различные значения x случайной величины выбираются из ее распределения:
Var [f (x)] = E[(f (x) - E [f (x)]) 2],                                                                  (1.6.12)
Резюме
· Мы можем делать выборку из распределений вероятностей.
· Мы можем анализировать несколько случайных величин, используя совместное распределение, условное распределение, теорему Байеса, маргинализацию и предположения независимости.
· Ожидание и дисперсия предлагают полезные меры для обобщения ключевых характеристик вероятностных распределений.
Упражнения
1. Мы провели m = 500 групп экспериментов, в каждой из которых было отобрано n = 10 образцов. Варьируйте m и n. Наблюдайте и анализируйте экспериментальные результаты.
2. Для двух событий с вероятностью P (A) и P (B) вычислить верхнюю и нижнюю границы для P (A ∪ B) и P (A ∩ B). (Подсказка: отобразите ситуацию, используя диаграмму Венна.)
3. Предположим, что у нас есть последовательность случайных величин, скажем, A, B и C, где B зависит только от A, а C зависит только от B, можете ли вы упростить совместную вероятность P (A, B, C)? (Подсказка: это цепь Маркова.)
4. В Разделе 2.6.2 первый тест более точен. Почему бы просто не провести первый тест во второй раз?
1.7 Документация
Из-за ограничений по количеству часов по этому курсу мы не можем представить каждую отдельную функцию и класс MXNet (и вы, вероятно, не захотите, чтобы мы это сделали). Документация по API, а также дополнительные руководства и примеры содержат множество документации помимо книги. В этом разделе мы дадим вам некоторые рекомендации по изучению MXNet API.

1.7.1 Поиск всех функций и классов в модуле
Чтобы узнать, какие функции и классы могут быть вызваны в модуле, мы вызываем функцию dir. Например, мы можем запросить все свойства в модуле для генерации случайных чисел: 
from mxnet import np
print(dir(np.random))
['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '_
,→_package__', '__spec__', '_mx_nd_np', 'absolute_import', 'choice', 'multinomial', 'normal',
,→ 'rand', 'randint', 'shuffle', 'uniform']

Как правило, мы можем игнорировать функции, которые начинаются и заканчиваются на __ (специальные объекты в Python) или функции, которые начинаются с одного символа _ (обычно внутренние функции). Основываясь на оставшихся именах функций или атрибутов, мы можем рискнуть предположить, что этот модуль предлагает различные методы для генерации случайных чисел, включая выборку из равномерного распределения (равномерный), нормального распределения (нормального) и полиномиального распределения (полиномиального).
1.7.2 Поиск использования определенных функций и классов
Для получения более конкретных инструкций о том, как использовать данную функцию или класс, мы можем вызвать функцию справки. В качестве примера рассмотрим инструкции по использованию функции тензоров.
help(np.ones)
Справка по функциональным в модуле mxnet.numpy:
ones(shape, dtype=<class 'numpy.float32'>, order='C', ctx=None)
Вернуть новый массив заданной формы и типа, заполненный единицами.
Эта функция в настоящее время поддерживает только хранение многомерных данных в строчном формате (стиль C).
Параметры
----------
shape : int or tuple of int

Форма пустого массива.
dtype: str или numpy.dtype, необязательно
Необязательный тип значения. По умолчанию - numpy.float32. Обратите внимание, что это поведение отличается от функции NumPy ones, где float64 является значением по умолчанию, потому что float32 считается значением по умолчанию
тип данных в глубоком обучении.
порядок: {'C'}, необязательно, по умолчанию: 'C'
Как хранить многомерные данные в памяти, в настоящее время поддерживается только строчный (C-стиль).
ctx: Context, необязательно
Необязательный контекст устройства (по умолчанию - текущий контекст по умолчанию).
Возвращает
-------
out : ndarray
Array of ones with the given shape, dtype, and ctx.
Examples
--------
>>> np.ones(5)
array([1., 1., 1., 1., 1.])
>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 1], dtype=int64)
>>> np.ones((2, 1))
array([[1.],
[1.]])
>>> s = (2,2)
>>> np.ones(s)
array([[1., 1.],
[1., 1.]])

Из документации мы видим, что функция one создает новый тензор с указанной формой и устанавливает для всех элементов значение 1. По возможности вы должны выполнить быстрый тест, чтобы подтвердить вашу интерпретацию:
np.ones(4)
array([1., 1., 1., 1.])

В блокноте Jupyter мы можем использовать? для отображения документа в другом окне. Например, список? создаст контент, почти идентичный справке (списку), отображая его в новом окне браузера. Кроме того, если мы используем два вопросительных знака, например, список ??, также будет отображаться код Python, реализующий функцию.

Резюме
· Официальная документация содержит множество описаний и примеров, выходящих за рамки этой книги.
· Мы можем найти документацию по использованию API, вызвав функции dir и help, или? и ?? в записных книжках Jupyter.
Упражнения
1. Поищите документацию по любой функции или классу в среде глубокого обучения. Можете ли вы также найти документацию на официальном сайте фреймворка?
Обсуждение (см. https://discuss.d2l.ai/t/38)

image1.emf

